The following is an evaluation of BigramTagger, one the simpler taggers offered by the NLTK.

Ancient Greek

To replicate this, clone https://github.com/cltk/greek_treebank_perseus and copy the .pos into your current directory, naming it greek_training_set.pos.

In [1]:
from nltk.corpus.reader import TaggedCorpusReader
from nltk.tag import BigramTagger
from nltk.tokenize import wordpunct_tokenize
In [2]:
reader = TaggedCorpusReader('.', 'greek_training_set.pos')
train_sents = reader.tagged_sents()
In [3]:
tagger = BigramTagger(train_sents)
tagger.evaluate(train_sents)
Out[3]:
0.8125528866223641

Latin

To replicate this, clone https://github.com/cltk/latin_treebank_perseus and copy the .pos into your current directory, naming it latin_training_set.pos.

In [4]:
reader = TaggedCorpusReader('.', 'latin_training_set.pos')
train_sents = reader.tagged_sents()
In [5]:
tagger = BigramTagger(train_sents)
tagger.evaluate(train_sents)
Out[5]:
0.7211862333703404